China Custom Good Sale Reducer Gearbox Fk130b/Fk230b/Fk330b/Fk530b /Fk730b for Mixer Truck with high quality

Product Description

 Good sale Reducer   Gearbox FK130B/FK230B/FK330B/FK530B /Fk730B for Mixer Truck

 

Product Description

 

Specification
  Model
FK130B FK230B FK270B FK330B FK430B FK530B FK730B FK830B FK930B
Mixer Volume (cbm) 3-5 4-6 6-7 7-8 9-10 10-12 12-14 15-16 17-20
Output Torque (Nm) 30000 36000 42000 48000 54000 70000 75000 85000 95000
Reduction ration 103 103 128.5 133.7 135.5 135.5 144.3 141.3 141.3
Drum angle (°) 15 15 15 15 15 15 13 12 10
Input rotation 2500 2500 2500 2500 2500 2500 2500 2500 2500
Radial load (kN) 70 72 100 130 160 170 190 235 275
Axial load (kN) 20 22 28 36 45 50 60 70 90
Weight (kg) 160 162 175 185 325 330 340 405 415
Lubricating oil (L) 5.5 7.0 7.0 7.5 11.5 11.5 11.5 13.5 15.5
Swing angle of Flange plate ±6 ±6 ±6 ±6 ±6 ±6 ±6 ±6 ±6
Model of Gear oil SAE 85W-90/API GL4 GL5 SAE 85W-90/API GL4 GL5 SAE 85W-90/API GL4 GL5 SAE 85W-90/API GL4 GL5 SAE 85W-90/API GL4 GL5 SAE 85W-90/API GL4 GL5 SAE 85W-90/API GL4 GL5 SAE 85W-90/API GL4 GL5 SAE 85W-90/API GL4 GL5
Connection port of Water pump NO NO NO NO NO NO NO NO NO
Connection flange of Hydraulic motor SAE C
16/32 Z21
SAE C
16/32 Z21
SAE C
16/32 Z21
SAE C
16/32 Z21
SAE C
16/32 Z21
SAE C
16/32 Z21
SAE C
16/32 Z21
SAE C
16/32 Z21
SAE C
16/32 Z21

 

Application

 

Detailed Photos

 

 

Application: Electric Cars, Motorcycle, Machinery, Marine, Agricultural Machinery, Car
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

planetary gearbox

Challenges in Achieving High Gear Ratios with Compactness in Planetary Gearboxes

Designing planetary gearboxes with high gear ratios while maintaining compactness presents several challenges:

  • Space Constraints: As the gear ratio increases, the number of gear stages required also increases. This can lead to larger gearbox sizes, which may be challenging to accommodate in applications with limited space.
  • Bearing Loads: Higher gear ratios often result in increased loads on the bearings and other components due to the redistribution of forces. This can impact the durability and lifespan of the gearbox.
  • Efficiency: Each gear stage introduces losses due to friction and other factors. With multiple stages, the overall efficiency of the gearbox can decrease, affecting its energy efficiency.
  • Complexity: Achieving high gear ratios can require complex gear arrangements and additional components, which can lead to increased manufacturing complexity and costs.
  • Thermal Effects: Higher gear ratios can lead to greater heat generation due to increased friction and loads. Managing thermal effects becomes crucial to prevent overheating and component failure.

To address these challenges, gearbox designers use advanced materials, precise machining techniques, and innovative bearing arrangements to optimize the design for both compactness and performance. Computer simulations and modeling play a critical role in predicting the behavior of the gearbox under different operating conditions, helping to ensure reliability and efficiency.

planetary gearbox

Considerations for Selecting Size and Gear Materials in Planetary Gearboxes

Choosing the appropriate size and gear materials for a planetary gearbox is crucial for optimal performance and reliability. Here are the key considerations:

1. Load and Torque Requirements: Evaluate the anticipated load and torque that the gearbox will experience in the application. Select a gearbox size that can handle the maximum load without exceeding its capacity, ensuring reliable and durable operation.

2. Gear Ratio: Determine the required gear ratio to achieve the desired output speed and torque. Different gear ratios are achieved by varying the number of teeth on the gears. Select a gearbox with a suitable gear ratio for your application’s requirements.

3. Efficiency: Consider the efficiency of the gearbox, which is influenced by factors such as gear meshing, bearing losses, and lubrication. A higher efficiency gearbox minimizes energy losses and improves overall system performance.

4. Space Constraints: Evaluate the available space for installing the gearbox. Planetary gearboxes offer compact designs, but it’s essential to ensure that the selected size fits within the available area, especially in applications with limited space.

5. Material Selection: Choose suitable gear materials based on factors like load, speed, and operating conditions. High-quality materials, such as hardened steel or specialized alloys, enhance gear strength, durability, and resistance to wear and fatigue.

6. Lubrication: Proper lubrication is critical for reducing friction and wear in the gearbox. Consider the lubrication requirements of the selected gear materials and ensure the gearbox is designed for efficient lubricant distribution and maintenance.

7. Environmental Conditions: Assess the environmental conditions in which the gearbox will operate. Factors such as temperature, humidity, and exposure to contaminants can impact gear material performance. Choose materials that can withstand the operating environment.

8. Noise and Vibration: Gear material selection can influence noise and vibration levels. Some materials are more adept at dampening vibrations and reducing noise, which is essential for applications where quiet operation is crucial.

9. Cost: Consider the budget for the gearbox and balance the cost of materials, manufacturing, and performance requirements. While high-quality materials may increase initial costs, they can lead to longer gearbox lifespan and reduced maintenance expenses.

10. Manufacturer’s Recommendations: Consult with gearbox manufacturers or experts for guidance on selecting the appropriate size and gear materials. They can provide insights based on their experience and knowledge of various applications.

Ultimately, the proper selection of size and gear materials is vital for achieving reliable, efficient, and long-lasting performance in planetary gearboxes. Taking into account load, gear ratio, materials, lubrication, and other factors ensures the gearbox meets the specific needs of the application.

planetary gearbox

Examples of High Torque and Compact Design Applications for Planetary Gearboxes

Planetary gearboxes excel in applications where high torque output and a compact design are essential. Here are some scenarios where these characteristics are crucial:

  • Automotive Transmissions: In modern vehicles, planetary gearboxes are used in automatic transmissions to efficiently transmit engine power to the wheels. The compact size of planetary gearboxes allows for integration within the limited space of a vehicle’s transmission housing.
  • Robotics: Planetary gearboxes are utilized in robotic arms and joints, where compactness is essential to maintain the robot’s overall size while providing the necessary torque for precise and controlled movement.
  • Conveyor Systems: Conveyor belts in industries like material handling and manufacturing often require high torque to move heavy loads. The compact design of planetary gearboxes allows them to be integrated into the conveyor system’s framework.
  • Wind Turbines: Wind turbine applications demand high torque to convert low wind speeds into sufficient rotational force for power generation. The compact design of planetary gearboxes helps optimize space within the turbine’s nacelle.
  • Construction Machinery: Heavy equipment used in construction, such as excavators and loaders, rely on planetary gearboxes to provide the necessary torque for digging and lifting operations without adding excessive weight to the machinery.
  • Marine Propulsion: Planetary gearboxes play a crucial role in marine propulsion systems by efficiently transmitting high torque from the engine to the propeller shaft. The compact design is particularly important in the limited space of a ship’s engine room.

These examples highlight the significance of planetary gearboxes in applications where both high torque output and a compact footprint are vital considerations. Their ability to deliver efficient torque conversion within a small space makes them well-suited for a wide range of industries and machinery.

China Custom Good Sale Reducer Gearbox Fk130b/Fk230b/Fk330b/Fk530b /Fk730b for Mixer Truck   with high quality China Custom Good Sale Reducer Gearbox Fk130b/Fk230b/Fk330b/Fk530b /Fk730b for Mixer Truck   with high quality
editor by CX 2023-11-20

Recent Posts