Product Description
Planetary reducer is a widely used industrial product that can reduce the speed of the motor while increasing the output torque.Planetary reducer can be used as supporting parts for lifting, mining, transportation, construction and other industries.
The planetary gear reducer has the following features: light weight, small size, large transmission ratio range, high efficiency, smooth operation, low noise, and strong adaptability. It is widely used in industrial departments such as metallurgy, mining, hoisting and transportation, power generation, energy, construction and building materials, light industry, and transportation.
Product description:
1. The planetary gear reducer adopts modular design and can be changed and combined according to customer requirements.
2. The reducer uses an epicyclic planetary gear transmission and rationally utilizes internal and external meshing and power distribution.
3. The housing is made of ductile iron, which greatly improves the rigidity and shock resistance of the housing.
4. All gears are carburized and quenched, with a high hardness and wear-resistant surface. After heat treatment, all gears are ground, reducing noise and improving the efficiency and service life of the entire machine.
5. The planetary gear reducer products have 9-34 types, and the planetary transmission gear ratio has 2 and 3 levels.
Speed reduction ratio: 25~4000r/min (combined with RX, R, and K series to achieve a larger speed reduction ratio)
Output torque: up to 2,600,000 Nm
Motor power: 0.4-129,340 kW
Our Advantages
1. High Precision: back gap is less than 5 arc minutes, accurate positioning.
2. The precision of the gear can be controlled below ISO4 level by using the top ultra-precision machine tool and the world’s leading tooth grinding.
3. The gear material is made of advanced low carbon alloy forged steel. After deed heat treatment, it can reach HRC60.
4. It can be adapted to any servo motor in the world.
5. Using synthetic grease, and adopt IP65 sealing design, no leakage and no maintenance.
6. The cage planetary support structure and the output shaft are integrated to achieve high stiffness and precision.
Product Parameters
Description:
(1).The output shaft is made of large size,large span double bearing design,output shaft and planetary arm bracket as a whole.The input shaft is placed directly on the planet arm bracket to ensure that the reducer has high operating accuracy and maximum torsional rigidity.
(2).Shell and the inner ring gear used integrated design,quenching and tempering after the processing of the teeth so that it can achieve high torque,high precision,high wear resistance.Moreover surface nickel-plated anti-rust treatment,so that its corrosion resistance greatly enhanced.
(3).The planetary gear transmission employs full needle roller without retainer to increase the contact surface,which greatly upgrades structural rigidity and service life.
(4).The gear is made of Japanese imported material.After the metal cutting process,the vacuum carburizing heat treatment to 58-62HRC. And then by the hobbing,Get the best tooth shape,tooth direction,to ensure that the gear of high precision and good impact toughness.
(5).Input shaft and sun gear integrated structure,in order to improve the operation accuracy of the reducer.
| Product type | Stage | Ratio | FLE42 | FLF57 | HPR28 | HPR35 | HPR42 | HPS42 | HPS42 MA,MB ,MC |
HPS/R60 | HPR60 MA,MB ,MC |
HPS60 MA,MB ,MC |
HPS90 MA,MB |
HPS115 MA,MB ,MC |
HPS130 MA.MB ,MC |
HPZS60 MA,MB ,MC |
HPZS90 MA,MB |
HXF060 | HXF90 |
| Nominal Output Torque | L1 | 3 | / | / | / | 6 | 8 | / | / | 16 | / | / | / | / | / | / | / | 35 | 104 |
| 4 | 9 | 25 | 2 | 7 | 9 | 9 | 9 | 25 | 25 | 25 | 80 | 220 | 220 | 25 | 80 | 45 | 112 | ||
| 5 | 9 | 25 | 3 | 6.5 | 9 | 9 | 9 | 28 | 28 | 28 | 90 | 230 | 230 | 28 | 90 | 44 | 112 | ||
| 7 | / | / | 2 | 5 | 5 | 5 | 5 | 20 | 20 | 20 | 60 | 150 | 150 | 20 | 60 | 40 | 100 | ||
| 10 | 5 | 10 | 1 | / | 5 | 5 | 10 | 10 | 10 | 39 | 90 | 90 | 10 | 39 | 22 | 76 | |||
| L2 | 15 | / | / | / | / | 10 | / | / | / | / | / | / | / | / | / | / | / | 112 | |
| 16 | / | / | 4 | / | 12 | 12 | 12 | 30 | 30 | 30 | 90 | 250 | 250 | 30 | 90 | 40 | / | ||
| 20 | 10 | 25 | 4 | 8.5 | 12 | 12 | 12 | 30 | 30 | 30 | 90 | 250 | 250 | 30 | 90 | 45 | 112 | ||
| 25 | 10 | 25 | 4 | 8.5 | 10 | 10 | 10 | 32 | 32 | 32 | 100 | 260 | 260 | 32 | 100 | 45 | 112 | ||
| 28 | / | / | 4 | / | 10 | 10 | 10 | 30 | 30 | 30 | 90 | 250 | 250 | 30 | 90 | 45 | / | ||
| 30 | / | / | / | 7 | 10 | / | / | 30 | / | / | / | / | / | / | / | 35 | 104 | ||
| 35 | / | / | 4 | / | 10 | 10 | 10 | 30 | 30 | 30 | 100 | 260 | 260 | 30 | 100 | 45 | / | ||
| 40 | / | / | 3 | / | 10 | 10 | 10 | 25 | 25 | 25 | 90 | 250 | 250 | 25 | 90 | 45 | 112 | ||
| 50 | 10 | 20 | 3 | / | 10 | 10 | 10 | 25 | 25 | 25 | 100 | 260 | 260 | 25 | 100 | 45 | 112 | ||
| 70 | / | / | 3 | / | 10 | 10 | 10 | 20 | 20 | 20 | 70 | 160 | 160 | 20 | 70 | 40 | 100 | ||
| 100 | 5 | / | 6 | 9 | 5 | 5 | 5 | 10 | 10 | 10 | / | / | / | 10 | / | 22 | 76 | ||
| Sudden Stop Torque | N.m | L1/L2/L3 | 2Times of Nominal Output Torque | ||||||||||||||||
Company Profile
/* October 22, 2571 15:47:17 */(()=>{function d(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Considerations for Selecting Planetary Gearboxes for Aerospace and Satellite Applications
Selecting planetary gearboxes for aerospace and satellite applications requires careful consideration due to the unique demands of these industries:
- Weight and Size: Aerospace and satellite systems demand lightweight and compact components. Planetary gearboxes with high power density and lightweight materials are preferred to minimize the overall weight and size of the equipment.
- Reliability: Aerospace missions involve critical operations where component failure is not an option. Planetary gearboxes with a proven track record of reliability and durability are essential to ensure mission success.
- High Efficiency: Efficiency is crucial in aerospace applications to optimize power usage and extend the operational life of satellites. Planetary gearboxes with high efficiency ratings contribute to energy conservation.
- Extreme Environments: Aerospace and satellite systems are exposed to harsh conditions such as vacuum, extreme temperatures, and radiation. Planetary gearboxes need to be designed and tested to withstand these conditions without compromising performance.
- Precision and Accuracy: Many aerospace operations require precise positioning and accurate control. Planetary gearboxes with minimal backlash and high precision gear meshing contribute to accurate movements.
- Lubrication: Lubrication plays a vital role in aerospace gearboxes to ensure smooth operation and prevent wear. Gearboxes with efficient lubrication systems or self-lubricating materials are favored.
- Redundancy and Fail-Safe: Some aerospace systems incorporate redundancy to ensure mission success even in case of component failure. Planetary gearboxes with built-in redundancy or fail-safe mechanisms enhance system reliability.
- Integration: Planetary gearboxes need to be seamlessly integrated into the overall design of aerospace and satellite systems. Customization options and compatibility with other components are important factors.
Overall, selecting planetary gearboxes for aerospace and satellite applications involves a comprehensive evaluation of factors related to weight, reliability, efficiency, durability, environmental resistance, precision, and integration to meet the unique demands of these industries.
Maintenance Practices to Extend the Lifespan of Planetary Gearboxes
Proper maintenance is essential for ensuring the longevity and optimal performance of planetary gearboxes. Here are specific maintenance practices that can help extend the lifespan of planetary gearboxes:
1. Regular Inspections: Implement a schedule for routine visual inspections of the gearbox. Look for signs of wear, damage, oil leaks, and any abnormal conditions. Early detection of issues can prevent more significant problems.
2. Lubrication: Adequate lubrication is crucial for reducing friction and wear between gearbox components. Follow the manufacturer’s recommendations for lubricant type, viscosity, and change intervals. Ensure that the gearbox is properly lubricated to prevent premature wear.
3. Proper Installation: Ensure the gearbox is installed correctly, following the manufacturer’s guidelines and specifications. Proper alignment, torque settings, and clearances are critical to prevent misalignment-related wear and other issues.
4. Load Monitoring: Avoid overloading the gearbox beyond its designed capacity. Excessive loads can accelerate wear and reduce the gearbox’s lifespan. Regularly monitor the load conditions and ensure they are within the gearbox’s rated capacity.
5. Temperature Control: Maintain the operating temperature within the recommended range. Excessive heat can lead to accelerated wear and lubricant breakdown. Adequate ventilation and cooling measures may be necessary in high-temperature environments.
6. Seal and Gasket Inspection: Regularly check seals and gaskets for signs of leakage. Damaged seals can lead to lubricant loss and contamination, which can cause premature wear and gear damage.
7. Vibration Analysis: Use vibration analysis techniques to detect early signs of misalignment, imbalance, or other mechanical issues. Monitoring vibration levels can help identify problems before they lead to serious damage.
8. Preventive Maintenance: Establish a preventive maintenance program based on the gearbox’s operational conditions and usage. Perform scheduled maintenance tasks such as gear inspections, lubricant changes, and component replacements as needed.
9. Training and Documentation: Ensure that maintenance personnel are trained in proper gearbox maintenance procedures. Keep comprehensive records of maintenance activities, inspections, and repairs to track the gearbox’s condition and history.
10. Consult Manufacturer Guidelines: Always refer to the manufacturer’s maintenance and servicing guidelines specific to the gearbox model and application. Following these guidelines will help maintain warranty coverage and ensure best practices are followed.
By adhering to these maintenance practices, you can significantly extend the lifespan of your planetary gearbox, minimize downtime, and ensure reliable performance for your industrial machinery or application.
Common Applications and Industries of Planetary Gearboxes
Planetary gearboxes are widely utilized across various industries and applications due to their unique design and performance characteristics. Some common applications and industries where planetary gearboxes are commonly used include:
- Automotive Industry: Planetary gearboxes are found in automatic transmissions, hybrid vehicle systems, and powertrains. They provide efficient torque conversion and variable gear ratios.
- Robotics: Planetary gearboxes are used in robotic joints and manipulators, providing compact and high-torque solutions for precise movement.
- Industrial Machinery: They are employed in conveyors, cranes, pumps, mixers, and various heavy-duty machinery where high torque and compact design are essential.
- Aerospace: Aerospace applications include aircraft actuation systems, landing gear mechanisms, and satellite deployment mechanisms.
- Material Handling: Planetary gearboxes are used in equipment like forklifts and pallet jacks to provide controlled movement and high lifting capabilities.
- Renewable Energy: Wind turbines use planetary gearboxes to convert low-speed, high-torque rotational motion of the blades into higher-speed rotational motion for power generation.
- Medical Devices: Planetary gearboxes find applications in medical imaging equipment, prosthetics, and surgical robots for precise and controlled motion.
- Mining and Construction: Planetary gearboxes are used in heavy equipment like excavators, loaders, and bulldozers to handle heavy loads and provide controlled movement.
- Marine Industry: They are employed in marine propulsion systems, winches, and steering mechanisms, benefiting from their compact design and high torque capabilities.
The versatility of planetary gearboxes makes them suitable for applications that require compact size, high torque density, and efficient power transmission. Their ability to handle varying torque loads, offer high gear ratios, and maintain consistent performance has led to their widespread adoption across numerous industries.
editor by lmc 2024-11-28




